
MATH 2040 Linear Algebra II
Supplementary Notes by Martin Li

Pre-requisite on complex numbers 1

For the purpose of algebra, the set of real numbers R is often not sufficient. For example, there
is no real roots to the quadratic equation x2 + 1 = 0. In many situations, we would like to work
with complex numbers which have similar algebraic properties with R but enjoy an extra property that
any polynomial equation with complex coefficients must have at least one root. This property is so
important that it is often called the “Fundamental Theorem of Algebra”. In this short note, we will
review some of the basic concepts about complex numbers.

Definition 1. A complex number is an expression of the form z = a+ bi, where a, b ∈ R are called
the real part and imaginary part of z, denoted by Re z and Im z, respectively. The sum and product
of two complex numbers are defined by

(a+ bi) + (c+ di) := (a+ c) + (b+ d)i,

(a+ bi)(c+ di) := (ac− bd) + (ad+ bc)i,

where a, b, c, d ∈ R. The set of all complex numbers is denoted by C.

Using the multiplication defined above, one can verify that i2 = −1. You can recover the definition
of complex multiplication above by recalling that i2 = −1 and then using the usual rules of arithmetic.
The symbol i =

√
−1 was first introduced by Euler in 1777.

Any real number a ∈ R can be regarded as a complex number by identifying a+0i with a. Therefore,
we can think of R as a subset of C. On the other hand, any complex number of the form z = 0 + bi,
where 0 6= b ∈ R, is called purely imaginary. Notice that the product of two purely imaginary
numbers in C is real.

Example 1. Let z = 2 + 3i and w = 4 + 5i be two complex numbers in C. Then,

z + w = (2 + 3i) + (4 + 5i) = (2 + 4) + (3 + 5)i = 6 + 8i,

zw = (2 + 3i)(4 + 5i) = (2 · 4− 3 · 5) + (2 · 5 + 3 · 4)i = −7 + 22i.

Proposition 2. Complex numbers satisfy the following algebraic properties:

(i) (commutativity) z + w = w + z and zw = wz for all z, w ∈ C.

(ii) (associativity) (z + u) + w = z + (u+ w) and (zu)w = z(uw) for all z, u, w ∈ C.

(iii) (identities) z + 0 = z and 1z = z for all z ∈ C.

(iv) (additive inverse) ∀z ∈ C, ∃ a unique w ∈ C such that z + w = 0.

(v) (multiplicative inverse) ∀z ∈ C with z 6= 0, ∃ a unique w ∈ C such that zw = 1.
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(vi) (distributive property) u(z + w) = uz + uw for all u, z, w ∈ C.

Proof. The properties above are proved using familiar properties of real numbers and the definition
of complex addition and multiplication. For example, to prove that zw = wz for all z, w ∈ C, let
z = a+ bi and w = c+ di where a, b, c, d ∈ R, then

zw = (ac− bd) + (ad+ bc)i = (ca− db) + (da+ cd)i = wz.

The proof of the other properties are left as an exercise.

Exercise 1. Prove all the properties in the proposition above.

Exercise 2. Suppose a, b ∈ R, not both zero. Find c, d ∈ R such that 1/(a+ bi) = c+ di.

Exercise 3. Let z = −1+
√
3i

2 . Show that z3 = 1.

Exercise 4. Find two distinct z ∈ C such that z2 = i.

Definition 3. Given a complex number z = a+ bi ∈ C, where a, b ∈ R, the complex conjugate of z,
denoted by z, is the complex number z = a− bi.

Example 2. The complex conjugates of the complex numbers 1 + 2i, 3i, 5 are given by 1− 2i, −3i and
5 respectively.

It is easy to see that z + z = 2 Re z and z − z = 2i Im z. Moreover, we have the following:

Proposition 4. Complex conjugation satisfies the following properties:

(a) z = z for all z ∈ C.

(b) z + w = z + w and zw = z w for all z, w ∈ C.

(c)
(
z
w

)
= z

w for all z, w ∈ C with w 6= 0.

(d) z = z if and only if z ∈ R

(e) z = −z if and only if z is purely imaginary.

Proof. Exercise.

Definition 5. Let z = a+ bi ∈ C where a, b ∈ R. The absolute value or modulus of z, denoted by
|z|, is defined by

|z| := a2 + b2.

Note that by definition |z| is always a non-negative real number. Moreover, |z| = 0 if and only of
z = 0. Clearly, we have |Re z| ≤ |z|, | Im z| ≤ |z| and |z| = |z| for all z ∈ C.

Proposition 6. Let z, w ∈ C. Then the following statements are true:
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(a) zz = |z|2

(b) |zw| = |z| |w|.

(c)
∣∣ z
w

∣∣ = |z|
|w| whenever w 6= 0.

(d) ||z| − |w|| ≤ |z + w| ≤ |z|+ |w|.

Proof. (a) Let z = a+ ib, where a, b ∈ R. Then

zz = (a+ bi)(a− bi) = a2 + b2 = |z|2.

(b) By (a) and Proposition 4 (b)

|zw|2 = (zw)(zw) = (zw)(z w) = (zz)(ww) = |z|2|w|2.

Taking square root on both sides gives the desired result.

(c) It follows from (b) by considering |z| =
∣∣ z
w

∣∣ |w| and dividing by |w| 6= 0 on both sides.

(d) We first prove the second inequality. The first inequality will follow from the second by considering

|z| = |(z + w)− w| ≤ |z + w|+ | − w| = |z + w|+ |w|

and subtracting |w| on both sides. To prove that |z + w| ≤ |z| + |w| (also known is the triangle
inequality), first notice that for any complex number u = a+ bi, we have

u+ u = (a+ bi) + (a− bi) = 2a ≤ 2
√
a2 + b2 = 2|u|.

Applying the above with u = wz, we have

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + wz + wz + ww

≤ |z|2 + 2|wz|+ |w|2 = |z|2 + 2|w||z|+ |w|2 = (|z|+ |w|)2.

Taking square root on both sides gives the required inequality.

The properties of complex conjugate and absolute value above provides some additional tools in
manipulating complex numbers.

Example 3. Compute the quotient 1−i
1+i as follows:

1− i
1 + i

=
(1− i)(1 + i)

(1 + i)(1 + i)
=

(1− i)2

|1 + i|2
=
−2i

2
= −i.

Exercise 5. Compute 2−i
3+4i .
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In Section 2.7 (p.132). we introduce Filler's formula. The special case 
(,tn _ c o s g _|_ j g m 0 js 0£ particular interest. Because of the geometry we have 
introduced, we may represent the vector c'" as in Figure D.l(b); that is, el° 
is the unit vector that makes an angle 6 with the positive real axis. From 
this figure, we sec1 that any nonzero complex number z may be depicted as 
a multiple of a unit vector, namely, z = |^|e*^, where 0 is the angle that the 
vector z makes with the positive real axis. Thus multiplication, as well as 
addition, has a simple geometric interpretation: If z = \z\e and w = \w\e,w 

are two nonzero complex numbers, then from the properties established in 
Section 2.7 and Theorem D.3. we have 

.//• >o we' ,i(<H a;) 

So zw is the vector whose length is the product of the lengths of z and ;/>, 
and makes the angle 0 + uj with the positive real axis. 

Our motivation for enlarging the set of real numbers to the set of complex 
numbers is to obtain a field such that every polynomial with nonzero degree 
having coefficients in that field has a zero. Our next result guarantees that 
the field of complex numbers has this property. 

Theorem D.4 (The Fundamental Theorem of Algebra). Suppose 
that p(z) = o.„z" + a„ iz" l + ••• + a\z + a{) is a polynomial in P(C) of 
degree n > 1. Then />(.r) has a zero. 

The following proof is based on one in the book Principles of Mathematical 
Analysis 3d., by Walter Rudin (McGraw-Hill Higher Education. New York, 
1976). 

Proof. We want to find zrj in C such that p(zo) = 0. Let m be the greatest 
lower bound of {|/>(c)|: 2 G ('}. For \z\ = s > 0. we have 

\p(z)\ •-= \anzn +a„_ i .«-i an 

Figure 1: The complex plane

It is interesting that complex numbers have both a geometric and algebraic representation. Suppose
z = a + bi where a, b ∈ R. We can draw z as a point in the plane R2 with coordinates (a, b). In this
way, we identify C with the plane R2 where the x-axis is called the real axis and the y-axis is called
the imaginary axis respectively. Under this identification, the addition of complex numbers is simply
the vector addition in the plane, and |z| gives the length of the vector z (from the origin). See Figure
1.

One can also introduce some kind of “polar coordinates” on the complex plane as follows. First, we
define for any θ ∈ R,

eiθ = cos θ + i sin θ.

This is the famous Euler’s formula 2. Using the picture of the complex plane above, eiθ, θ ∈ R, lies
on the unit circle in the complex plane and thus one can express any non-zero complex number z as:

z = |z|eiφ,

where φ is the angle that the vector z makes with the real axis (see Figure 2). Note that if z = |z|eiφ
and w = |w|eiω, then zw = |z||w|ei(φ+ω) (can you prove this?). This gives a geometric meaning of
complex multiplications.560 Appendices 
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Figure 2: The polar coordinates on C

The major reason for us to introduce complex numbers is that it is algebraically closed. Precisely,
it means the following:

2Using this one can define the exponential of a complex number z = a + bi (where a, b ∈ R) by ez := eaeib =
ea(cos b + i sin b).
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Theorem 7 (The Fundamental Theorem of Algebra). Any non-constant polynomial with complex
coefficients has at least one root in C, i.e., for any p(z) = a0 + a1z + · · ·+ anz

n ∈ P(C) where an 6= 0
with n ≥ 1, there exists some z0 ∈ C such that p(z0) = 0.

There are many proofs of the theorem above using real or complex analysis, for example.

Additional topic: fields

Part of the reason why the real and complex numbers are so useful is that they are examples of an
algebraic structure called a field. Roughly speaking, a field is a “number system” for which you can
add, subtract, multiply and divide (by a non-zero number). More precisely, a field is defined as follows.

Definition 8. A field is a set F on which two operations + and · (called addition and multiplication
respectively) are defined so that, for each pair of x, y ∈ F, there are unique elements x+ y and x · y in
F such that all the following properties are satisfied: for all a, b, c ∈ F,

(F1) (commutativity) a+ b = b+ a and a · b = b · a

(F2) (associativity) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c)

(F3) (identity elements) there exist distinct elements 0 and 1 in F such that 0 + a = a and 1 · a = a
for all a ∈ F

(F4) (inverses) For each a ∈ F, there exists b ∈ F such that a + b = 0. For each a ∈ F, a 6= 0, there
exists b ∈ F such that a · b = 1

(F5) (distributive law) a · (b+ c) = a · b+ a · c

Of course, R and C are examples of a field. A less trivial example is the set of all rational numbers
Q. The following two are some interesting examples of a field.

Example 4. The set {a+ b
√

2 : a, b ∈ Q} with the usual addition and multiplication is a field.

Example 5. The set Z2 = {0, 1} with the operations defined by the following:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0,

0 · 0 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1,

is a field. This is the simplest example of a finite field.

Exercise 6. Verify that Z2 is a field.

Exercise 7. Can you given an example of a field with exactly 3 elements?

*Exercise 8. Can you given an example of a field with exactly 4 elements?

Exercise 9. Show that the set of all integers Z is not a field.
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One can derive a number of algebraic properties satisfied by any field (e.g. cancellation laws). We
refer the readers to any textbook on abstract algebra for a more detailed treatment of fields.

In an arbitrary field F, it may as well happen that 1 + 1 + · · ·+ 1 (p summands) equals 0 for some
positive integer p. If such a p exists, the smallest positive integer p for which a sum of p 1’s equals
0 is called the characteristic of F. If no such p exists, we say that F has characteristic zero.
For example, Z2 has characteristic 2 and both R and C has characteristic zero. In fact, almost all
the theorems covered in this course holds for any field F of characteristic zero. However, for fields
of characteristic p, many unnatural phenomenon appear. It is a challenging exercise to check which
theorems fail for example in Z2 instead of F = R or C.
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